G. Brat
USRA/RIACS

National Aeronautics and
Space Administration

The Vision
for Space
Exploration

February 2004

Implement a sustained and affordable human and
robotic program to explore the solar system and beyond,;

Extend human presence across the solar system,
starting with a return to the Moon by the year 2020, in
preparation of the exploration of Mars and other
destination;

Develop the innovative technologies, knowledge, and
infrastructures, both to explore and to support decisions
about the destinations for human exploration;

Promote international and commercial participation in
exploration to further U.S. scientific, security, and
economic interests.

Identify Key Robotic Human Missions
Targets Trailblazers to the Moon

: . 2, : .
.‘. 4 ’ H
. “fm :

Undsrground (cdans,
Bigkgical fil:temistw. *
e

and - -
I Casgini Casgifi

| Satuin Titan

I Arrval Landing

[

O

. Huable Space wepler |[Webh Space
~ Takccopa Missior ITeIescooe

| ‘ y
l s _— - 1
= e Terresirial Plane
I _ £nder Extras
i

Spiser Space Epace | |
| Telescope Inlerferamet -y Missicn Plalne I

2000 2010 2020

carlh-Like 2Ean2s
and Life

* Mission:
— Long range traverses (< 6km)
— Collect samples
— Analyze samples on-board

900 kg rover baseline
112 kg instruments & support
Two arms

Need to develop three systems for each mission:
— Flight software

— Ground software

— Simulation software

Flight software

— Rovers will require more adaptable software to do
long traverses for example

Ground software
— Need planning software for planning operations

— Need autonomous execution for uploading and
executing commands on ISS or on-orbit

V&V of a different type of software systems

Interface to users/operations

Generates plans of
activities given high-
level goals and

activity constraints

EUROPA Il —
(Planner)

Transform plans
into scheduled
low-level control
actions

. Interface
i

PLEXIL

RN

e

Formal execution
language that issue
low-level commands

Controlled Hardware

Interface to users/operations

* Graph manipulation errors:
static analysis, symbolic
execution and advanced testing
* Meta-rule errors: model
checking, static analysis

EUROPA I
(Planner)

Model A

-
¢ . J]
]

] Interface

* Run time errors: static analysis

» Safety properties: model

checking and compositional

verification

 Other properties of interest:
*Real-time
*Convergence/divergence

PLEXIL

e

= T

« Ambuigity, inconsistency,
completeness: symbolic
model checking
 Functional reqgs: symbolic
model checking

Controlled Hardware

Interface to users/operations

| Model |
EURC ™A || —

(Pl?)

_ L

Controlled Hardware

Autonomy for Operations
— Pls: Jeremy Frank & Ari Jonsson
— PM: Robert Brummett

Project goal:
— Develop and mature needed automation software

— capabilities for Constellation mission operations, onboard
— control, crew assistance and robotics.

Core capabilities
— Human in-the-loop automation
— Monitored execution
— Decision support
— Operation requirement studies
— Simulation and testbeds
— Application and prototypes
— Verification

* Mission Operations
» Operating procedure generation
» Space flight operations planning
* Remote system operations (nominal and off-nominal)
« Support of crew control (nominal and off-nominal)
- Crewed Spacecraft Operations
« Spacecraft systems operations (nominal and off-nominal)
- Robotic Operations
» Explorers and scouts on the lunar surface
 Assistants and tools for human explorers
- Lunar Infrastructure Operations
 Control of habitats, communications and power equipment, etc.
- Unmanned Spacecraft Operations
* Remote system operations (nominal and off-nominal)

* Mission Operations

 State of art : Many tools, lack of interoperability

* Need: mission operations paradigm
- Crewed Spacecraft Operations

 State of art : Crew relies on ground to support and control operations

* Need: Crews able to operate systems and own tasks

- Robotics Operations
 State of art: Requires multiple operators for command and monitoring
* Need: robot operations
- Lunar Surface Operations
 State of art : Ground-based operation of most surface assets
* Need: robot operations
- Unmanned Spacecraft Operations

« State of art: Requires direct human command and monitoring
* Need: operations

- Key elements of technology
» Re-usable, interoperable and adaptable architecture
* Data-driven general and re-usable modules
« Common data specifications support adaptability, evolvability and
interoperability of tools based on standards developed by CSI
» Automation capabilities
* Monitoring and analysis of telemetry and system states

. : From help for users to on-board decision-making
. : Carry out decisions and plans, from humans and automation

 Human interaction support
* Adjustable automation allows humans to handle more or less as needed
 Assistance provides summary of information, options, evaluations,
warnings
« Complementary capabilities based on computational power

- Flexible and reusable - on ground and on board
» Enable transition from initial manual flights to sustainable operations
« Same core capabilities used on ground, in flight and on lunar surface

-« Executive

* Lightweight engine for executing PLEXIL plans Inteiaces
« Small memory and processor footprint
» General and reusable PLEXIL
« Same engine for many applications
v

» Compiles on VxWorks, Linux, Solaris, OSX
» Simple, well defined interface to low level
control

« Commanding interface
» Sensing interface

* Provides tools for users

Universal Executive

Interface to systems

» Applications
* Drives procedure execution automation
» Executes plans for on-board operations C
* Runs K10 rover activity plans on board —

* Procedures

* Notion generalizes a number of existing concepts:
Command sequences, plans, checklists, diagnosis procedures, etc.

* Procedures for both humans and automation

. : Human-understandable; e.g., operations procedures
. : Machine-understandable; e.g., plans and command sequences
* Need a combination to enable adjustable automation

* Procedure Representation Language (PRL)

* Combines ISS procedure schema with PLEXIL schema
« XML-based language

 Elements of PRL

* Meta data provides names, context, version, etc. for procedure
» Control data provides logical control and safety conditions

» Steps and nodes structure procedure for human readability

* Instructions specify instructions, commands, etc.

* Main focus: how to validate procedures?

* We have five major efforts under way

— Definition of formal semantics of PLEXIL
language

— Model-based generation of test plans for
PLEXIL

— Model checking of PLEXIL procedures
— Simulation of PRL procedures
— Model checking of PRL procedures

- PLEXIL

- Plan Execution Interchange Language
 For describing plans, sequences, procedures, scripts, etc.
« Simple syntax that is very powerful
» Timed command sequences, event driven sequences, monitors
« Concurrent execution, repeating sequences, etc.
» Contingencies, conditionals, etc.

» Guarantees unambiguous execution
* Provides guarantees against deadlocks
» Simple syntax facilitates validation and checking

- General and reusable
- PLEXIL is logical automation core of PRL

« Control logic and safety conditions in PRL map to PLEXIL
» Execution semantics and properties of PLEXIL extend to PRL

« We investigate two ways of applying model checking to
procedures

« Compositional model checking using LTSA:

— Build Labelled Transition System Analyser (LTSA) models for
« underlying physical system (e.g., using FSM models for simulation)
» procedures

— Define safety properties of interest for the procedures

— Model check the LTSA models using compositional techniques
to alleviate the state explosion problems

« SMART model checking:
— Build SMART models of PLEXIL macros
— Check for deadlock and behavioral correctness properties

— Investigate scalability of the approach by defining appropriate
abstractions

 The definition of formal semantics of PLEXIL

language is necessary for the development of
formal verification tools

* Our approach:

— Described behavioral formal semantics of PLEXIL in
LTSA models

» Detection of subtle execution errors in PLEXIL models
» Automatic translation of PLEXIL procedures into LTSA models

— Described formal semantics of PLEXIL in PVS

* Prove determinism and behavioral determinism for the PLEXIL
language

* Behavioral model for the state waiting of a
PLEXIL node

Until
Condition

L)
Anc&storclnvanant — skipPE IR @

EXIL

9
.
it

TASERY

PLEXIL PLEXIL
node

58
A N
Rl et

TASERY TASERY

Composed LTSA Model for PLEXIL Plan

PLEXIL

de((%>
9

it

TASERY

XML
Model
For
System
Interface

Translator

\/

\

AN

LTSA Model for System Interface

enterRPCopen

enterRPCCinhibited

enterRPCopen

fire enterRPCCinhilenterRPCopen enterRPCcenterRPCCenabled

P G SIS oo e
oY 1Y 2VvY 3Y 4V 5VY gV 7V

{enteri. «C{enteriv. C{enterkrCC{entern.. “C{enterkrCC{enterkrCC {enterk rCC{enterRPCCenabled, enterRPCopen, fire}
NY \ v /N) v v

enterRPCCenabled enterRPCCinhibited enterRPCcenterRPCCinhibited

FireProof1

enterRPCclosed fire

enterRPCCenabled

enterRPCclosed

System Model

PLEXIL Plan Model

Safety Property

Compositional

Verification

Full
LTSA
Model

Component A

D
D

D
D

Component B

« Design-level: decompose (architecture)

— establish contracts (assume-guarantee pairs) between
components to guarantee key system-level properties

« Code-level: verify and test
— verify or test each component against its individual contracts

* Reconfiguration
— verify new components against contracts of substituted ones

Component C

Reconfiguration

« Decompose properties of system (M, || M,) in
properties of its components

* Does M, satisfy P?

Ml — typically a component is designed to satisfy its
requirements in specific contexts / environments

« Assume-guarantee reasoning: introduces

assumption A representing M,’s “context”
« Simplest assume-guarantee rule

1. A M (P
2. (truey M, (A

(true)y My || M, (P)

Test Plan

PLEXIL
Test plans
I (XML Files)

PLEXIL

Grammar
(XML

Schema)

Java
representati
on

.)

Castor Test Plan
Tool Generator
(Java PathFinder
Model checking
tanl)

* The goal is to automatically generate
procedures for testing PLEXIL based on the
PLEXIL grammar
— The Castor-based translation is done

— The test plan generation is inherited from previous
research

Original procedure Encoding in PRL

EPS 3.209 RPCM TRIP (POST CCS)
(EPS/5A - ALLUFIN 7) Page 1 of 11 pages

@ "
i M — <Step stepld="step3">
e <StepTitle>

RPGM Type V

15 the Inteq Counter 2 [Loss of Comm. Al

RT; ;C/’\“!'SZIHS incrementing? data Irom this RPCM is

RPCM Type | & +Yes suspect ndication is for the: S
<StepNumber>3</StepNumber>
lout > 12.3A 32ms ’i] APCM Firmware

HPCM Type IV COMM (POST CCS. all (SODF

~ Gontinue [0 troubleshool
Trip

* MCC-H will further
troubleshool

Alleastone HPC has an
attention symbol (1 rip). and
o RPGs are in the Close
state.

@ “CM H
<Text>RPCM Firmware Health</Text>
” </StepTitle>
onormee | [E] e e
<Instruction instructionIlD="step3_i1">
<Verifylnstruction>

e <Text>Verify ORU Health OK</Text>

Cnp Awaiting Recovery - X

<InstructionBlock>
- <VerifyGoal>
</TargetDescription>

Health 3210 APCMLOSS
E
Firmware
Alleast one 11PC has an
are tipped
. .
L] <TargetDescription>
« sel Inpul Undervoltage
Irp - X and Trip Recovery HECM input undervolt

RPC loul > 13210 5 MAI FUNCTION: SECONDARY POWER SYSTIM)
controller value to

atiention symbol indicatig

Trip - X

Inhiated -

No Undervolt frip Flags

30 MAR 04

10782.doc

* Authoring
* Graphical and Textual Editing
» Syntax checking and Syntax constraints
 Viewing
* Static and Dynamic views on procedures
* Procedure Checking
* Check procedures against flight rules
» Check procedures against constraints
* Assist in evaluation of simulation results
» General interface supports plug and play of
validation components
« Configuration and workflow management
* Support workflow, including repositories,
signoffs, etc.

ppppppp

»»»»»

~ 4
System state
Automated checker simulation with

and verifier property checking
) -

Interoperation layer

w (Interactive
Procedure
) Procedure
editor
test

 Build finite state machine (FSM) models
describing the underlying physical system (at
least, its interface to the operator world)

« Simulate the execution of the procedure in
conjunction with the FSMs

* |dentify missing pre-conditions for nominal
state execution

Hangar

Procedural

. State Machine based
D Is play LIS N KIS RIS 1 4B K B AT

Simulator

NS

) —)
. T FreeFlyerGN&C
Failure mode -

and fault events
injection

N

\

Flight Rules
Verifier

Attitude Free Drfft

Translation Free D)

]

Procedure and Display

Mini AERCam Procedure
SYSTEM Power Up and Configuration

2 “ERIFY Hangar HEALTH
Ccs CS_GUI: Hangar Health & Status

Auto. Auto.
Attitude Contrpl Translation Contjol

Free|Flight

Hangar Health & Status Gyro

Health Overview
08T

-Pass
-Temperature OK
-/oltage OK
serify Propulsion Recharge Tank Pressure -Pressure OK

4. ¥ERIFY FF HEALTH

]
cs CS_GuI g x [Em
Free Flyer Health' Ty s
“ferify Gormm Uplink -Uplink OK ! | -t [E—
rify Comim Downlink -Downlink OK - Y
2z

rify Temperature -Temperature OK
Jerify Yoltages -*oltage OK
“erify Tank Pressure -Pressure OK

o

ignal Strenath = Q0%
ropellant Level = 90%

werify Battery Lewvel = Q0%
GNC*
“erify GNC ode -Free Drift

::> Playback

XML
Model
For
System
Interface

_//

l

Translator

System Model

PLEXIL Plan Model

Safety Property

Simulator

Hangar

Error trace

Full
JPF
Model

datal/scheduling

VM observer heurtstics o
verification report

- Ilbrar)f property choice { s path
verification target abstraction checker generator)
{Java brtecode programi) Step 211 Thread #0
oldclassic.java:65 eventl.await for eventi);
ol Lr;ta te oldclassic java:37 wait();
JPF virtual machine >
mgnt Step #14 Thread #1
oldclassic.java:95 event2.wait for eventi);
? oldclassic.java:37 wait();
search strategy (|| e thread stacks

Thread: Thread-0
at java.lang.Objectwait{javallang/Object java: 429)

at Eventawait for event(oldclassic.java:37)
end

Thread: Thread-|
at java.lang.Object.wait(javallangfObject java: 429)
at Eventawait for event(oldclassic.java:37)

 Validation of planning models by
translating them into model checking
models

 Validation of plans and plan robustness

« Automatic generation of test cases to test
against flight rules

« The goal is to study validation of planning models by
translating them into SAL model checking models

* Approach:

— Definition of a simple planning language, called APPL (A Plan
Preparation Language), based on NDDL that is more amenable

to formal verification
— Automatic translation from APPL models to NDDL models

— Automatic translation from APPL models to SAL models

« We also study the relationship between APPL and the language
unifying NDDL and Casper

— Investigation issues of representation in SAL so that scalability

problem can be avoided
« For example, the representation of time and timers

The goal is to automatically generate test cases

for planners so that we can test against flight
rules

Process:

— Modeling flight rules in appropriate language

» We started with LTL (linear temporal logic), but are
considering others

— Generate coverage conditions that cover flight rules
accordlng to “ unlque cause” criterion

“Unique cause” is an extension of the commonly used
MC/DC coverage criterion mandated by the FAA

— Generate test case in the form of Europa goals (or
partial plans) using the coverage conditions

Flight

Rules
(English)
7
Domain
Model |—» EUROPA l«—
(NDDL)
7
A 4 A 4
FAIL
Plans

Flight

Rules
(patterns)

Flight
Rules
(LTL, ATL)

Test
Suite

(NDDL cmds

= goals

= partial plans)

4

Generate

Coverage
Conditions

(set of
LTL, ATL

Translate

